Code No.: 15646 S N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) V-Semester Supplementary Examinations, June-2023 Automata Languages & Computation

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	-40		Stem	Part-A (10					M	_		2002
1.	What are the differences among DFA, NFA and ε-NFA?							M	L	CO	PC	
2.	State Arden's theorem. Give an example							2	2	1	1	
3.	Distinguish between derivation tree and parse tree							2	2	1	1	
4.	Def	aisii betwee	n derivatioi	n tree and j	parse tree				2	1	2	1
		Define ambiguous CFG. Give an example Give the formal definition of PDA to accept L (M) and N(M).							2	1	2	1
5.	Give the	formal def	inition of P	DA to acc	ept L (M)) and	N(M).		2	2	3	
6.	What is	What is left recursive grammar? How to remove left recursion from a grammar? Give an example.						om a	2	1	3	1
7.	The following description of Turing Machine accepting $\{0^n1^n n\geq 1\}$, with q_0 as initial state and q_f as final state. What is the number of head movements of TM on input 0^n1^n .						with	2	4	4	2	
	δ	0	1	X	Y		В					
	q_0	(q_1,X,R)		7 12	(q ₃ , Y,	R)	B					
	q ₁	$(q_1,0,R)$	(q_2, Y, L)		(q ₁ ,Y,							
	<u>q</u> 2	$(q_2,0,L)$		(q_0,X,R)								
	q ₃			1 1 1	$(q_3,Y,]$		(q _f , B, R)					
0	q_f		Fin	al state; A	ccept							
3.	Describe	Instantaneo	us Descrip	tion (ID) o	f a TM				2	1	4	1
9.	Give the reproblems.	elationship	between P,	NP, NP-I	lard and	NP-	Complete		2	1	5	1
0.	Define PC	CP and MPC	P. Give an	example					2	1	5	1
			Part-B (5	\times 8 = 40 Λ	(arks)							
. a) I	Design a DFA for following languages over the alphabet (0.1)							1	2			
I	$L = \{ \mathbf{w} \mid \mathbf{v} \}$	v is divisibl	e by 3 or it	ends in 00	}	aoci	(0, 1).		4	3	1	2
b) (Convert th	e following	NFA to DI	FA	,				1	2		
		δ		,					4	2	1	1
		7.		b	C		d					
		71		-		{9	$0, q_1$ }					
		12	· la	$\{q_3,q_3\}$	q_1,q_2							
1		$\{q_3, q_4, q_5, q_6\}$	79.	4955								

Code No.: 15646 S N/O

2. a) Giv	te, find the equivalent Minim	nized D	FA.	start state and D is the accept				
State		0	1					
	->	A B	A					
		ВА	C					
	_	C D	В					
		*D D	A					
	-	E D	-					
		FC	5500					
		G						
		H (-				
b) C	consider the following grammeree for the following sentence	nar. Co	nstru	ct left most derivation & parse (a, a))	4	1	2	1
	$S \to (L) \mid a$							
-	$L \to L, S \mid S$				1	3	3	2
	agultant grammar			t the end give the minimized		3	,	2
I	below. Note that '#' is the en	d mark	er or	q_0 , Z_0 , ϕ), where δ is shown the input string.				
	$\delta(q_0, a, Z_0) = \{ (q_0, a_0) \in \{ $	$AZ_0)$	δ(q	$(q_1, \epsilon) $ $\{ (q_1, \epsilon) \}$				
				$(0, a, B) = \{ (q_0, AB) \}$				
	$\delta(q_0, c, Z_0) = \{ (q_1,$	$Z_0)$	$\delta(c)$	$(0, b, B) = \{ (q_0, BB) \}$				
	$\delta(q_0, a, A) = \{ (q_0, a_0) \in \{ (q$	AA) }	$\delta(c)$	$(q_1, c, B) = \{ (q_1, B) \}$				
	$\delta(q_0, b, A) = \{ (q_0, b) \in A \}$	BA) }	$\delta(0)$	$q_1, b, B = \{ (q_1, \varepsilon) \}$				
	$\delta(q_0, c, A) = \{ (q_1, q_2) \}$	A) }		$q_1, \#, Z_0 = \{ (q_1, \varepsilon) \}$			2	
b)	Convert the following gram	mar int	o Gre	eibach Normal Form.	4	2	3	1
	$A_1 \rightarrow A_2 A_3$							
	$A_2 \rightarrow A_3 A_4 \mid a$							
	$A_3 \rightarrow A_4 A_1 \mid b$							
	$A_4 \rightarrow A_1 A_2 \mid c$			m (- > 1)	4	3	4	
14. a)	Design a Turing Machine f	or L={	a^nb^nc	" n ≥1 }		no 256		
	You must show the	/** m		ion Diagram				
10 AP	(i) String processing,(iii) Transition Table	(11) T	ransı	tion Diagram stance of any example string				